
Tutorial Notes 3

1. (a) Write | exp(2z + i)| and | exp(iz2)| in terms of x and y. Then show
that

| exp(2z + i)|+ | exp(iz2)| ≤ e2x + e−2xy.

(b) Show that | exp(z2)| ≤ exp(|z|2).
(c) Prove that | exp(−2z)| < 1 if and only if Re z > 0.

2. Show that exp(iz) = exp(iz) if and only if z = nπ (n = 0,±1,±2, . . . ).

3. (a) Recall (Sec. 6) that if z = x+ iy, then:

x =
z + z̄

2
, y =

z − z̄

2i
.

By formally applying the chain rule in calculus to a function F (x, y) of two real
variables, derive the expression:

∂F

∂z̄
=

∂F

∂x

∂x

∂z̄
+

∂F

∂y

∂y

∂z̄
=

1

2

(
∂F

∂x
+ i

∂F

∂y

)
.

(b) Define the operator:

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

suggested by part (a), to show that if the first-order partial derivatives of the
real and imaginary components of a function f(z) = u(x, y) + iv(x, y) satisfy
the Cauchy-Riemann equations, then:

∂f

∂z̄
=

1

2
[(ux − vy) + i(vx + uy)] = 0.

Thus derive the complex form ∂f
∂z̄ = 0 of the Cauchy-Riemann equations.
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Problem 1(a): Express | exp(2z + i)| and | exp(iz2)|
in terms of x and y, and show that

| exp(2z + i)|+ | exp(iz2)| ≤ e2x + e−2xy.

Solution:
For any complex number z = x+ iy,

exp(z) = exeiy.

Since |eiy| = 1, we get:
| exp(z)| = ex.

- For | exp(2z + i)|:

| exp(2z + i)| = | exp(2x+ 2iy + i)| = e2x|ei(2y+1)| = e2x.

- For | exp(iz2)|: Let z2 = (x+ iy)2 = x2 − y2 + 2ixy,

| exp(iz2)| = | exp(i(x2 − y2 + 2ixy))| = |e−2xyei(x
2−y2)| = e−2xy.

Summing:
| exp(2z + i)|+ | exp(iz2)| = e2x + e−2xy.

Thus, the inequality is satisfied.

Problem 1(b): Show that | exp(z2)| ≤ exp(|z|2).
Solution:

Let z = x+ iy, then:
z2 = x2 − y2 + 2ixy.

Thus,

exp(z2) = ex
2−y2

ei2xy.

Taking the modulus:

| exp(z2)| = |ex
2−y2

ei2xy| = ex
2−y2

.

Since |z|2 = x2 + y2, we have:

ex
2−y2

≤ ex
2+y2

.

Thus:
| exp(z2)| ≤ exp(|z|2).
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Problem 1(c): Prove that | exp(−2z)| < 1 if and
only if Re(z) > 0.

Solution:
exp(−2z) = e−2xe−i2y.

Taking the modulus:

| exp(−2z)| = |e−2xe−i2y| = e−2x.

For | exp(−2z)| < 1, we need:
e−2x < 1.

Since e−2x is always positive, this holds if and only if:

−2x < 0 ⇒ x > 0.

Thus, | exp(−2z)| < 1 if and only if Re(z) > 0.

Problem 2: Show that:

exp(iz) = exp(iz)

if and only if:

z = nπ, n = 0,±1,±2, . . .

Solution:

exp(iz) = ei(x+iy) = eixe−y.

Taking the complex conjugate,

exp(iz) = e−ixe−y.

Similarly,
exp(iz) = ei(x−iy) = eixey.

Thus, the given equation transforms into:

e−ixe−y = eixey.

Equating the magnitudes:

e−y = ey ⇒ −y = y ⇒ y = 0.

Thus, z must be purely real.
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Equating the phase components:

e−ix = eix.

This holds if and only if:

−ix = ix+ 2πin, n ∈ Z.

Solving for x:
−2ix = 2πin ⇒ x = nπ.

Thus, z must be of the form:

z = nπ, n ∈ Z.

z = nπ, n = 0,±1,±2, . . .

Problem 3(a): Compute ∂F
∂z̄ Using the Chain Rule

Given:

z = x+ iy, z̄ = x− iy,

and

x =
z + z̄

2
, y =

z − z̄

2i
.

Applying the chain rule:

∂F

∂z̄
=

∂F

∂x

∂x

∂z̄
+

∂F

∂y

∂y

∂z̄
.

We compute:

∂x

∂z̄
=

1

2
,

∂y

∂z̄
=

i

2
.

Thus,

∂F

∂z̄
=

1

2

(
∂F

∂x
+ i

∂F

∂y

)
.

Problem 3(b): Prove that ∂f
∂z̄ = 0Using the Cauchy-

Riemann Equations

Define the operator:

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.
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Let f(z) = u(x, y) + iv(x, y), where u and v satisfy the Cauchy-Riemann equa-
tions:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Applying the operator to f :

∂f

∂z̄
=

1

2

[(
∂u

∂x
+ i

∂v

∂x

)
+ i

(
∂u

∂y
+ i

∂v

∂y

)]
.

Using the Cauchy-Riemann equations:

∂f

∂z̄
=

1

2
[(vy − vy) + i(vx + uy)] = 0.

Thus, we derive:

∂f

∂z̄
= 0.

This confirms analyticity.
Solution to the Problem on Complex Exponential Equality
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